3.213 \(\int \frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=88 \[ \frac{i \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[
Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.133905, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {3546, 3544, 205} \[ \frac{i \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[
Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3546

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*b*f*m), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{i \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}-\frac{i \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a}\\ &=\frac{i \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}-\frac{a \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{i \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.26969, size = 132, normalized size = 1.5 \[ \frac{i \sqrt{\tan (c+d x)} \left (\sqrt{-1+e^{2 i (c+d x)}}-e^{i (c+d x)} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{2} d \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*(Sqrt[-1 + E^((2*I)*(c + d*x))] - E^(I*(c + d*x))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*
Sqrt[Tan[c + d*x]])/(Sqrt[2]*d*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c +
d*x)))])

________________________________________________________________________________________

Maple [B]  time = 0.068, size = 347, normalized size = 3.9 \begin{align*}{\frac{1}{4\,ad \left ( -\tan \left ( dx+c \right ) +i \right ) ^{2}}\sqrt{\tan \left ( dx+c \right ) }\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) } \left ( 2\,i\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) \tan \left ( dx+c \right ) a-\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{2}a+\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) a-4\,i\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+4\,\tan \left ( dx+c \right ) \sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \right ){\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{-ia}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

1/4/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a*(2*I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a+2^(1/2)*ln((2*2^(1/2)*(-I*a
)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-4*I*(-I*a)^(1/2)*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)+4*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1
+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^2/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\tan \left (d x + c\right )}}{\sqrt{i \, a \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(d*x + c))/sqrt(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.92051, size = 961, normalized size = 10.92 \begin{align*} \frac{{\left (a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac{1}{4} \,{\left (i \, a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac{1}{4} \,{\left (-i \, a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (2 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(a*d*sqrt(2*I/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(1/4*(I*a*d*sqrt(2*I/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2
*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - a*d*sqrt(2*I/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(1/4*(-I*a*d*sqrt
(2*I/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I
)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqrt(2)*sqrt(a/(e^
(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(2*I*e^(2*I*d*x + 2*I*c)
+ 2*I)*e^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\tan{\left (c + d x \right )}}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(tan(c + d*x))/sqrt(a*(I*tan(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError